A Kind of Graphs with the Second and Third Minimal Hosoya Index

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs with maximal Hosoya index and minimal Merrifield-Simmons index

For a graph G, the Hosoya index and the Merrifield-Simmons index are defined as the total number of its matchings and the total number of its independent sets, respectively. In this paper, we characterize the structure of those graphs that minimize the Merrifield-Simmons index and those that maximize the Hosoya index in two classes of simple connected graphs with n vertices: graphs with fixed m...

متن کامل

On acyclic systems with minimal Hosoya index

The Hosoya index of a graph is de*ned as the total number of independent edge subsets of the graph. In this note, we characterize the trees with a given size of matching and having minimal and second minimal Hosoya index. ? 2002 Elsevier Science B.V. All rights reserved.

متن کامل

The smallest Hosoya index of unicyclic graphs with given diameter∗

The Hosoya index of a (molecular) graph is defined as the total number of the matchings, including the empty edge set, of this graph. Let Un,d be the set of connected unicyclic (molecular) graphs of order n with diameter d. In this paper we completely characterize the graphs from Un,d minimizing the Hosoya index and determine the values of corresponding indices. Moreover, the third smallest Hos...

متن کامل

On the Merrifield-Simmons index and Hosoya index of bicyclic graphs with a given girth

For a graph G, the Merrifield-Simmons index i(G) and the Hosoya index z(G) are defined as the total number of independent sets and the total number of matchings of the graph G, respectively. In this paper, we characterize the graphs with the maximal Merrifield-Simmons index and the minimal Hosoya index, respectively, among the bicyclic graphs on n vertices with a given girth g.

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2014

ISSN: 2324-7991,2324-8009

DOI: 10.12677/aam.2014.31007